Л.А. Рудая, П.Г. Жминько, д.б.н.

ТОКСИЧЕСКИЕ СВОЙСТВА ГЕРБИЦИДА КАЛИЕВОЙ СОЛИ ХЛОРСУЛЬФУРОНА ПРИ ОДНОКРАТНОМ ПЕРОРАЛЬНОМ ВОЗДЕЙСТВИИ НА ОРГАНИЗМ ТЕПЛОКРОВНЫХ ЖИВОТНЫХ

ГП "Институт экогигиены и токсикологии им.Л.И.Медведя", г.Киев

В настоящее время в системе защиты растений широко используются гербициды, принадлежащие к различным химическим группам веществ, что дает возможность значительно улучшить агротехнические мероприятия по вырашиванию сельскохозяйственных культур, повысить урожайность и качество растительной продукции. Одним из перспективных химических классов гербицилов, используемых для борьбы с сорняками, являются гербициды, относящиеся к классу сульфонилмочевины (СМ). Благодаря широкому спектру их гербицидного действия, высокой биологической активности и низким нормам применения ассортимент препаратов на основе СМ с каждым годом расширяется [1,2].

Калиевая соль хлорсульфурона — К-соль 2-хлор-[(N-4-метокси-6 метил-1,3,5-триазин-2-ил) аминокарбонил] бензолсульфамида (Ксоль ХС), 92 %, синтезирована в Научно-исследовательском институте химических средств защиты растений (НИИХСЗР, г. Москва, РФ) является действующим веществом препарата Ленок, рекомендованного в качестве гербицида на посевах льна [3].

Поскольку токсические свойства данного вещества недостаточно изучены, то задачей настоящей работы было определение степени опасности К-соль ХС при однократном пероральном воздействии на организм теплокровных животных и изучение его влияния на функциональное состояние ряда систем ор-

ганизма белых крыс.

Материалы и методы

Острая пероральная токсичность К-соли XC изучена на 3-х видах животных — белых беспородных крысах самцах и самках массой тела 180-190 г, мышах самцах и самках массой тела 20-22 г, кроликах самцах породы Шиншилла массой тела 2,10 — 2,30 кг. На протяжении всего эксперимента животных содержали на стандартном пищевом рационе в условиях вивария. Исследования проводили в соответствии с принципами биоэтики и требованиями гуманного отношения к животным.

K-соль XC животным вводили внутрижелудочно натощак с помощью зонда в виде равномерной эмульсии с ОП-7 в диапазоне доз от 1000 до 7000 мг/кг. Показателями токсичности служили: поведение животных, их внешний вид, время возникновения и характер интоксикации, сроки гибели животных [4]. Величины среднелетальных доз (ЛД₅₀) рассчитывали с помощью метода наименьших квадратов для пробит анализа кривых летальности по В.Б.Прозоровскому [5]. Установление степени опасности К-соли ХС при пероральном поступлении в организм теплокровных животных проводили общепринятыми методами в токсикологии [6, 7].

Изучение характера токсического действия К-соли XC при однократном пероральном воздействии на организм проводили на белых крысах самцах массой тела 150-200 г. Вещество вводили внутрижелудочно в виде равномерной водной

эмульсии с ОП-7 в дозе, соответствующей 1/2 ЛД₅₀ (2790 мг/кг). Через 1, 3, 5, 10 и 15 суток изучали интегральные, физиологические и биохимические показатели состояния организма животных. Ежедневно наблюдали за поведением животных, проявлением клинических симптомов интоксикации и временем их проявления.

Функциональное состояние нервной системы животных оценивали по двигательной активности, ориентировочной реакции и норковому рефлексу [8—9].

О влиянии на периферическую кровь судили по общему количеству лейкоцитов, эритроцитов, содержанию гемоглобина. Количество эритроцитов и лейкоцитов подсчитывали с помощью электронного автоматического счетчика "Целлоскоп-134" (Швеция); содержание гемоглобина в крови определяли унифицированным гемиглобинцианидным методом [10]. Состояние свертывающей и антисвертывающей системы крови оценивали по таким показателям: начало и окончание времени свертываемости, величина гематокрита, плотность сгустка крови, которые определяли с помощью прибора "Коагулограф" [11].

Функциональное состояние печени оценивали по активности аланин-аминотрансферазы (АЛТ), аспартат-аминотрансферазы (АСТ) и щелочной фосфатазы (ЩФ) в сыворотке крови [12, 13]. Содержание в сыворотке крови общего холестерина, как одного из критериев липидного обмена, изучали с помощью унифицированного метода S.Ilca [12].

Поскольку производные СМ оказывают преимущественно гипогликемизирующее действие [14], то о состоянии углеводного обмена судили по содержанию глюкозы в крови и моче, которую определяли О-толуидиновым методом [15], и инсулина в сыворотке крови, который определяли методом радиоконкурентного анализа [16].

Известно, что метаболизм большинства липофильных ксенобиотиков протекает при участии монооксигеназной гидроксилирующей системы (МОГС) печени. Определение активности МОГС может быть использовано как для оценки детоксикационной функции печени, так и выяснения роли этой системы в ме-

таболизме веществ, их токсичности, адаптационных процессах [17]. Состояние МОГС определяли по активности N — деметилирования амидопирина в надосадочной постмитохондриальной фракции печени по количеству образовавшегося формальдегида (Φ A) [18].

При влиянии многих ксенобиотиков может изменяться перекисное окисление липидов (ПОЛ), что ведет к накоплению токсичных продуктов, в частности, малонового диальдегида (МДА). Продукты ПОЛ могут инициировать свободнорадикальные процессы, в результате чего накапливается вредная для организма перекись водорода, разложение которой катализирует фермент каталаза. В связи с этим, активность липидпереокисления в митохондриальной фракции печени оценивали по содержанию МДА [19], состояние окислительно-восстановительных процессов - по изменению активности каталазы крови [20], а также по содержанию никотинамидных коферментов: окисленному и восстановленному никотинамидадениндинуклеотиду (НАД и НАДН соответственно) в ткани печени [21].

Для оценки функционального состояния почек изучали основные показатели: диурез при водной нагрузке, относительную плотность мочи рефрактометрическим методом, рН мочи, содержание мочевины в моче и сыворотке крови, а также содержание общего белка в моче [22].

О состоянии физико-химического гомеостаза организма крыс судили по кислотно-щелочному равновесию крови и электролитному обмену. Для этого на приборе "Микро-Аструп" фирмы "Радиометр" (Дания) определяли в крови парциальное давление углекислого газа (pCO_2)), величину рН крови; по номограмме Зиггард-Андрсена-Энгеля рассчитывали количество истинного (АВ) и стандартного (SB) гидрокарбоната, содержание буферных оснований (ВВ) и смещение буферных оснований (ВЕ- избыток, ВД — дефицит), общее содержание CO_2 (TCO_2) [23].

Минеральный обмен в организме крыс изучали по содержанию электролитов (Na, Cl, K) в сыворотке крови и моче. Содержание электролитов (K и Na) в сыворотке крови и суточной моче определяли методом пламенной фотометрии по ин-

тенсивности свечения соответствующего участка спектра [13]. Концентрацию хлоридов в крови и моче определяли меркуриметрическим методом с индикатором дифенилкарбазоном [15].

Поскольку производные мочевины обладают антитиреоидным действием [24], то влияние К-соли ХС на функциональную активность щитовидной железы изучали по содержанию гормонов тироксина и трийодтиронина в сыворотке крови, определяемых методом радиоконкурентного анализа [25, 26]. Радиоактивные метки просчитывали на стационарном сцинтиляционном счетчике "Гамма-1".

Известно, что под влиянием любого неблагоприятного воздействия может нарушаться гомеостаз, в регуляции которого принимают непосредственное участие стероидные гормоны коры надпочечников [27]. В связи с этим, функциональное состояние коры надпочечников оценивали по содержанию кортизола в сыворотке крови крыс, определяемого методом радиоиммунологического анализа [28].

Результаты исследований подвергали статистической обработке на микро-ЭВМ [29]. Определяли среднюю арифметическую (X), критерий Стьюдента (t) и вероятность полученных данных (P).

Результаты и их обсуждение

Установлено, что при пероральном однократном введении К-соли ХС величина ЛД₅₀ для крыс самцов составила 5580 ± 1002 мг/кг, самок — $5500 \pm 729 \;\;$ мг/кг; ЛД $_{50}$ для мышей самцов — $2050\pm 367 \,\mathrm{MF/kF}$, самок — $2460 \pm 312 \,\mathrm{MF/kF}; ЛД_{50} \,\mathrm{для} \,\mathrm{кроликов}$ самцов — 3900 ± 451 мг/кг. Симптомы острого отравления у изученных видов животных были идентичны, проявлялись сразу после введения вещества и характеризовались вначале возбуждением животных, увеличением их двигательной активности, а затем (через 20-30 минут после воздействия) — гиподинамией, затрудненным дыханием, нарушением координации движения. Гибель животных наблюдалась в течение 3-х суток. Наиболее чувствительным видом животных к действию К-соли ХС являются мыши (самцы). Вариабельность видовой и половой чувствительности к действию К-соли ХС не выражена. Коэффициент видовой чувствительности (КВЧ) — 2,72; коэффициент половой чувствительности (КПЧ) — 1,2. В соответствии с Гигиенической классификацией пестицидов по степени опасности (ДСанПіН 8.8.1.002-98), К-соль ХС по параметрам острой пероральной токсичности относится к малоопасным веществам (4 класс опасности).

При однократном пероральном воздействии K-соли XC на организм крыс самцов в дозе 2790 мг/кг гибели животных не наблюдалось, клинические симптомы интоксикации проявлялись сразу после введения и характеризовались гиподинамией и затрудненным дыханием.

Исследование влияния К-соли ХС на функциональное состояние центральной нервной системы показало, что данное вещество только через сутки после воздействия вызывало достоверное снижение ориентировочной реакции (количество пересеченных квадратов в мин составило в контроле — $6,70\pm0.60$, в опыте — $3,20\pm0,12$; P < 0,05), норкового рефлекса (количество заглядываний в норки в контроле — 2.26± 0.20. в опыте — 1.63 ± 0.19 : P < 0.05) и двигательной активности (количество импульсов в мин в контроле — $8,05\pm0,80$, в опыте — $3,20\pm0,30$; Р < 0,05). Степень снижения указанных показателей составила 53, 31 и 60 % соответственно. В последующие сроки исследований изученные показатели у подопытных крыс были на уровне контроля. Полученные данные свидетельствуют о том, что К-соль ХС слабо угнетает центральную нервную систему животных.

Влияние К-соли ХС на систему крови (табл. 1) отмечалось на 1 сутки исследований и характеризовалось увеличением количества эритроцитов (на 39 %) и содержания гемоглобина (на 22,7 %), что может быть связано со сгущением крови. На 10 сутки исследований отмечалось достоверное снижение количества лейкоцитов (на 46 %), однако величина данного показателя не выходила за пределы физиологических колебаний. К-соль ХС оказывала влияние на свертывающуюся систему крови, что проявлялось удлинением времени начала свертываемости (на 30 %), снижением плотности образовавшегося сгустка крови (на 50 %) в первые сутки и уменьшением времени свертываемости крови (на 30,71 %) на 10 сутки исследований (табл. 1).

Сроки	Группы живот- ных (n=6)	Показателиы									
иссле- дова- ний, сутки		Эритроциты, 10 /л ¹²	Лейкоциты, 10 /л ⁹	Гемоглобин, ммоль/л	Начало свертывае- мости, Т ₁ ,с	Окончание свертывае- мости, T ₂ , с	Начало ретракции сгустка, Т, с	Гематокрит, Атах (у.е.)	Плотность сгустка, Amix (y.e.)		
	Контроль	$7,39 \pm 0,67$	$12,96 \pm 0,53$	$8,19 \pm 0,41$	$63,00 \pm 4,19$	243,00 ± 17,39	321,33 ± 31,30	43,22 ± 1,07	0,044 ± 0,008		
1	Опыт	10,29 ± 0,78 *	$13,30 \pm 0,57$	$10,05 \pm 0,52*$	82,33 ± 2,55*	281,57 ± 23,57	373,50 ± 23,28	51,70 ± 2,19*	0,022 ± 0,002*		
3	Контроль	$7,63 \pm 0,74$	$13,12 \pm 0,80$	$7,51 \pm 0,43$	$76,25 \pm 5,60$	313,50 ± 37,88	385,00 ± 36,94	47,06 ± 4,38	0,050 ± 0,015		
3	Опыт	$8,05 \pm 0,52$	$13,46 \pm 0,51$	8,15 ± 0,13	87,00 ± 8,73	280,00 ± 21,53	392,00 ± 31,11	46,12 ± 3,07	0,040 ± 0,009		
5	Контроль	$7,28 \pm 0,42$	11,96 ± 0,88	$7,63 \pm 0,35$	91,50 ± 9,66	284,00 ± 26,59	546,50 ± 59,34	45,92 ± 3,58	0,045 ± 0.018		
	Опыт	8,11 ± 0,63	$9,76 \pm 0,83$	7,84 ± 0,70	$103,14 \pm 10,10$	279,57 ± 16,28	494,50 ± 26,21	44,61 ± 2,45	0,044 ± 0,008		
10	Контроль	$7,10 \pm 0,35$	11,24 ±1,10	8,75± 0,19	$73,33 \pm 3,33$	280,00 ± 40,00	573,33 ± 58,39	47,43 ± 1,84	0,030 ± 0,001		
	Опыт	$7,10 \pm 0,23$	5,51± 0,56*	$9,06 \pm 0,27$	$78,00 \pm 7,07$	194,00± 17,99*	746,00 ± 75,83	53,94 ± 4,01	0,028 ± 0,002		
15	Контроль	$8,70 \pm 0,15$	$5,70 \pm 0,80$	$8,19 \pm 0,31$	$73,60 \pm 5,06$	312,00 ± 32,19	458,83 ± 41,58	$48,05 \pm 3,51$	0.030 ± 0,006		
	Опыт	$8,90 \pm 0,10$	$5,60 \pm 0,54$	$8,36 \pm 0,31$	$77,28 \pm 6,52$	316,83 ± 22,01	474,33 ± 46,58	$44,28 \pm 0,81$	0,025 ± 0,005		

Примечание: * — P < 0,05

Как видно из табл. 2, при воздействии К-соли ХС на 1 сутки опыта отмечалось достоверное увеличение активности АЛТ на 29,4 %, содержания мочевины в сыворотке крови на 362 %. На 3-и и 5 сутки выявлено достоверное увеличение содержания холестерина в сыворотке крови на 115 % и 158 % соответственно. Активность АСТ и ЩФ в сыворотке крови находились на уровне конт-

рольных величин. С 1 по 5 сутки эксперимента наблюдалось достоверное повышение интенсивности процессов N-деметилирования амидопирина максимально на 3 сутки исследований на 266 % и интенсивности ПОЛ в постмитохондриальной фракции печени — на 74 % (рис.1).

Полученные данные свидетельствуют о том, что К-соль ХС оказы-

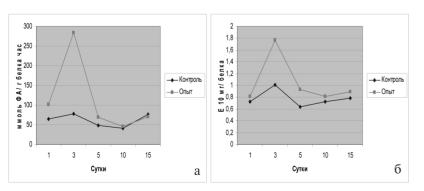


Рис. 1. Активность N-деметилирования амидопирина (а) и интенсивность перекисного окисления липидов (б) в митохондриальной фракции печени белых крыс при однократном пероральном воздействии K-соли XC в дозе 2790 мг/кг

вает гепатотоксическое действие, что может проявляться повышением проницаемости мембран гепатоцитов, изменением липидного обмена, индукцией МОГС и интенсификацией процессов перекисного окисления липилов.

Повышение окисления липидов сопровождалось достоверным повышением активности каталазы крови (на 3 сутки исследований — на 30 %), что свидетельствует об утилизации вредных окисленных продуктов. Однако при воздействии К-соли XC отмечалось незначительное нарушение окислительно-восстановительных процессов в организме крыс, на что указывает снижение содержания восстановленного никотинамидного кофермента (НАДН) в ткани печени на 5 сутки эксперимента — на 23,5 % (табл. 2).

При однократном воздействии K-соли XC выявлены изменения некоторых показателей мочи. Так, через 1 сутки исследований отмечалось снижение диуреза (в контроле 5.90 ± 0.60 мл, в опыте $-3.30 \pm$

процессы в организме белых крыс при однократном пероральном воздействии К-соли ХС в дозе 2790 мг/кг $(M \pm m)$

Сроки иссле- дова- ний, сутки	Группы живот- ных (n=6)	Показателиы									
		АЛТ, ммоль/л	АСТ, ммоль/л	ЩФ, мккат/л	Холестерин, ммоль/л	Мочевина, ммоль/л	Каталазный индекс	НАД в печени, мкмоль/г	НАДН в печени, мкмоль/г		
1	Контроль	$1,7 \pm 0,10$	$2,5 \pm 0,21$	$9,30 \pm 0,98$	$2,47 \pm 0,42$	$1,37 \pm 0,14$	$2,01 \pm 0,25$	515,82 ± 28,14	204,49 ± 4,61		
	Опыт	2,2 ± 0,11*	$2,4 \pm 0,23$	$11,10 \pm 1,18$	$2,65 \pm 0,21$	6,33 ± 0,61*	$2,04 \pm 0,06$	475,18 ± 44,10	163,53 ± 15,73		
3	Контроль	1,0± 0,31	$2,3 \pm 0,10$	$8,50 \pm 0,86$	$2,32 \pm 0,22$	$1,96 \pm 0,20$	$2,00 \pm 0,20$	562,71 ± 70,60	228,90 ± 24,25		
3	Опыт	$1,3 \pm 0,10$	$2,2 \pm 0,11$	$9,50 \pm 0,99$	5,00± 0,35*	1,48 ± 0,10	2,61 ± 0,15 *	528,32 ± 23,93	189,30 ± 16,35		
5	Контроль	$1,4 \pm 0,12$	$2,1 \pm 0,22$	$8,10 \pm 0,70$	$2,50 \pm 0,40$	2,49 ± 0,24	$1,37 \pm 0,13$	572,08 ± 74,34	260,78 ± 14,27		
,	Опыт	$1,5 \pm 0,21$	$2,0 \pm 0,21$	$8,50 \pm 0,71$	6,45±0,22*	$2,42 \pm 0,11$	$1,67 \pm 0,08$	508,32 ± 18,32	202,14 ± 9,69 *		
10	Контроль	$1,9 \pm 0,14$	$2,1 \pm 0,20$	$8,50 \pm 0,88$	2,49± 0,12	$2,67 \pm 0,26$	$3,11 \pm 0,38$	512,69 ± 38,03	236,02 ± 3,82		
10	Опыт	$1,7 \pm 0,20$	$2,0 \pm 0,23$	$9,00 \pm 0,80$	$2,71 \pm 0,32$	$2,62 \pm 0,14$	$2,74 \pm 0,25$	509,56 ± 21,48	230,00 ± 8,22		
15	Контроль	1,3 + 0,31	$2,9 \pm 0,11$	8,73 + 0,90	$2,67 \pm 0,52$	1,97 ± 0,17	$1,73 \pm 0,06$	534,57 ± 27,03	253,20 ± 11,80		
	Опыт	$1,9 \pm 0,22$	$2,9 \pm 0,20$	$8,20 \pm 0,87$	$2,55 \pm 0,43$	$2,97 \pm 0,25$	$1,80 \pm 0,05$	536,92 ± 11, 72	242,92 ± 10,46		

Примечание: * — P < 0.05

0,35 мл, Р< 0,05), увеличение плотности мочи (в контроле 1,017 \pm 0,002 усл. ед, в опыте — $1,037 \pm 0,001$ усл. ед., Р< 0,05) на 44,1 % и 1,9 % соответственно, что свидетельствует о нарушение выделительной функции почек. Через 2 суток исследований наблюдалось только увеличение плотности мочи (в контроле $1,010 \pm 0,001$ усл. ед, в опыте — 1,017 \pm 0,001усл. ед., P< 0,05) на 1,0 %, однако эти изменения не выходили за рамки физиологических колебаний. Содержание белка и мочевины в моче, рН мочи у подопытных животных было на уровне контроля во все сроки исследований.

При однократном пероральном воздействии К-соли ХС показатели кислотно-щелочного равновесия крови достоверно изменялись только через 1 сутки исследований: наблюдалось снижение рН (в контроле — $7,38 \pm 0,019$, в опыте $-7,35 \pm 0,010$, P < 0.05), pCO₂ — на 37,16 %, BB на 10,41%, SB — на 24,31 %, TCO₂ —

на 37,94 %, AB — на 38,04 %, BD в 2,9 раза (таб.3).

При этом, в сыворотке крови (табл. 4) на 3 сутки исследований отмечалось достоверное увеличение содержания Na (на 6 %), на 5 сутки исследований — содержание хлоридов (на 22 %). Содержание К практически не менялось. В моче крыс повышалось содержание Na на 1, 3 и 5 сутки исследований на 48,97 %, 115,38 % и 102,63 % и К — на 1 и 5 сутки на 22,45% и 156,5% соответственно. Содержание хлоридов практически не менялось.

Сдвиги кислотно-щелочного равновесия крови в сторону компенсаторного ацидоза в сочетании с изменениями электролитов в сыворотке крови и моче могут свидетельствовать о нарушении в организме белых крыс физико-химического гомеостаза.

Как видно на рис.2, при однократном пероральном воздействии K-соли XC в дозе 2790 мг/кг отмечалось увеличение содержания глюкозы в крови с максимальным эффектом на 10 сутки (на 66 %). Достоверное повышение уровня глюкозы в моче наблюдалось на 3 сутки опыта на 50 % (рис.2). При этом на 1 и 3 сутки исследований выявлено достоверное повышение содержания инсулина в крови на 67,25 % и 72,56 % соответственно (табл. 4). В дальнейшем изменений уровня инсулина в крови крыс не отмечалось. Это свидетельствует о том, что К-соль ХС оказывает влияние на углеводный обмен, повышая уровень глюкозы и содержание гормона ее превращения — инсулина.

При воздействии К-соли ХС наиболее характерным является стойкое изменение гормонов щитовидной железы, что может привести к нарушению ее функций (табл. 5). Изменение баланса гормонов щитовидной железы отмечалось в течение 10 суток исследований с наибольшим эффектом на 3 и 5 сутки. В

Таблица 3 Показатели кислотно-щелочного равновесия крови белых крыс при однократном внутрижелудочном воздействии K-соли XC в дозе 2790 мг/кг, $(M\pm m)$

Сроки исследова- ний, сутки	Группы животных (n=6)	pН	рСО ₂ мм.рт.ст	+ВЕ/- ВД ммоль/л	ВВ ммоль/л	SB ммоль/л	ТСО ₂ ммоль/л	АВ ммоль/л
1	Контроль	7,38 ±0,019	44,00±3,3	+2,29±0,5	48,04±1,2	25,50±0,8	26,91±1,7	25,42±1,5
	Опыт	7,35 ±0,016*	27,65±1,5*	-6,54±0,8*	43,04±1,5*	19,30±0,5*	16,70±0,7*	15,75±0,6*
3	Контроль	7,39 ±0,013	49,20±3,9	+1,90±0,7	47,67±1,3	26,74±1,4	28,18±1,0	26,54±1,1
3	Опыт	7,37 ±0,014	42,96±1,8	+1,89±0,4	47,00±0,4	24,50±0,6	25,97±0,6	24,80±0,4
5	Контроль	7,38 ±0,019	45,20±3,1	+2,10±0,6	47,90±1,1	25,58±0,8	27,80±0,8	26,35±0,8
3	Опыт	7,37 ±0,013	43,58±1,8	+1,68±0,3	45,90±1,4	25,00±0,4	25,98±2,2	24,58±2,1
10	Контроль	7,40 ±0,020	41,37±0,9	+3,45±0,4	50,35±0,8	26,89±0,8	28,99±1,0	27,18±0,6
10	Опыт	7,40 ±0,024	40,66±2,1	+3,12±0,5	51,90±1,1	27,60±0,1	28,50±1,9	27,36±1,9
15	Контроль	7,44 ±0,024	41,40±1,0	+3,00±0,5	50,40±0,8	27,10±0,7	29,10±0,9	27,00±1,0
	Опыт	7,43 ±0,016	45,32±1,7	+2,85±0,8	51,66±1,4	28,48±1,1	30,60±2,1	27,45±2,5

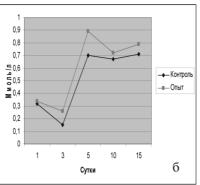

Примечание: * - P < 0.05

Таблица 4 Содержание электролитов в организме белых крыс при однократном пероральном воздействии K-соли XC в дозе 2790 мг/кг, ($M\pm m$)

Сроки		Содержание электролитов							
исследова-	Группы животных (n=6)	в сыво	ротке крови, мм	юль/л	в моче, г				
ний, сутки	(11 0)	Na	K	Cl	Na	K	Cl		
1	Контроль	$115,10 \pm 1,20$	$5,00 \pm 0,50$	$89,00 \pm 2,50$	4,90 + 0,50	4,90 + 0,20	$43,60 \pm 2,30$		
	Опыт	$115,60 \pm 2,10$	$4,20 \pm 0,10$	$93,00 \pm 1,60$	7,30 ± 0,10 *	6,00 ± 0,10 *	$45,00 \pm 3,10$		
3	Контроль	164,40 ± 1,40	$3,90 \pm 0,10$	$90,20 \pm 4,00$	3,90 + 0,50	3,10 + 0,50	$46,30 \pm 3,00$		
3	Опыт	173,90 ± 1,50 *	$3,60 \pm 0,20$	$82,00 \pm 1,50$	8,40 ± 0,40 *	$2,30 \pm 0,60$	$49,30 \pm 2,50$		
5	Контроль	126,40 + 5,90	$3,60 \pm 0,30$	$85,00 \pm 1,50$	3,80 + 0,40	2,30 + 0,20	$45,30 \pm 2,40$		
J	Опыт	$118,20 \pm 2,10$	$3,30 \pm 0,10$	104,00± 1,70 *	7,70 ± 0,60 *	5,90 ± 0,40 *	$44,50 \pm 1,50$		
10	Контроль	$152,20 \pm 3,20$	$4,90 \pm 0,60$	$94,50 \pm 3,10$	2,80 + 0,10	2,40 + 0,60	$59,20 \pm 3,50$		
	Опыт	$149,40 \pm 0,90$	$4,40 \pm 0,10$	99,60 ± 1,80	$2,17 \pm 0,50$	$2,70 \pm 0,20$	$60,00 \pm 5.00$		
15	Контроль	$117,00 \pm 1,60$	$3,10 \pm 0,20$	$93,50 \pm 3,80$	3,20 + 0,60	2,80 + 0,20	$53,60 \pm 4,30$		
	Опыт	$116,10 \pm 1,00$	$3,10 \pm 0,10$	$95,50 \pm 1,90$	$3,80 \pm 0,90$	$2,60 \pm 0,20$	$50,10 \pm 4,50$		

Примечание: * — P < 0,05

Рис. 2. Содержание глюкозы в сыворотке крови (а) и моче (б) белых крыс при однократном пероральном воздействии K-соли XC в дозе 2790 мг/кг

эти сроки исследований повышение уровня тироксина в сыворотки крови составляло 52,24~% и 34,05~%, снижение уровня трийодтиронина — 75,65~% и 65,83~% соответственно.

Изменение уровня кортизола было разнонаправленное и наблюдалось вначале исследований: через сутки снижалось содержания кортизола в крови на 20 %, 3 суток — повышение на 27 %, что может быть связано с реакцией надпочечников на стресс химического генеза (табл. 5).

Таким образом, K-соль XC по параметрам острой пероральной токсичности относится к малоопасным веществам, видовая и половая чувствительность не выражена.

На основании полученных данных о токсикодинамике K-соль XC при остром пероральном воздействии на организм крыс можно предположить, что в механизме острого токсического воздействия данного вещества важную роль играет развитие гипоксии, вследствие активации перекисного окисления ли-

пидов, снижения уровня дыхательных коферментов, смещения кислотно-щелочного равновесия крови в сторону компенсаторного ацидоза.

К-соль XC оказывает гепатотоксическое действие, что может проявляться повышением проницаемости мембран гепатоцитов, изменением липидного обмена, индукцией МОГС и интенсификацией процессов перекисного окисления липилов.

Как и для других представителей сульфонилмочевины, для К-соли XC характерным является нарушение углеводного обмена и функций щитовидной железы. Эти эффекты могут быть признаны как специфические.

Опосредованным воздействием К-соли XC может быть нарушение свертывающей и антисвертывающей системы крови, угнетение поведенческих реакций, что может быть связано с гипоксией, а также активация адреналовой системы, что обусловлено включением компенсаторных механизмов, направленных на повышение устойчивости тканей к гипоксии.

Таблица 5 Содержание гормонов в сыворотке крови белых крыс при однократном пероральном воздействии K-соли XC в дозе 2790 мг/кг, ($M\pm m$)

Сроки	Группы живот-	Показателиы								
исследова- ний, сутки	ных (n=6)	Тироксин, нмоль/л	Трийодтиронин, нмоль/л	Кортизол, нмоль/л	Инсулин, пмоль/л					
1	Контроль	$53,30 \pm 2,60$	$1,18 \pm 0,05$	139,00 + 4,70	$143,20 \pm 14,90$					
	Опыт	42,30 ± 2,70 *	1,67 ± 0,09*	110,00 + 8,00*	239,50± 27,80*					
3	Контроль	$55,70 \pm 4,40$	$1,15 \pm 0,10$	142,00 ± 3,90	$174,90 \pm 32,10$					
3	Опыт	26,60 ± 3,20 *	2,02 ± 0,20*	176,00 +10,00*	301,80 ± 26,50 *					
5	Контроль	$60,80 \pm 6,00$	$1,20 \pm 0,06$	$140,00 \pm 3,50$	$158,90 \pm 28,50$					
3	Опыт	40,10 ± 3,60 *	1,99 ± 0,20*	125,00 +11,00	$122,30 \pm 10,00$					
10	Контроль	$51,30 \pm 2,90$	$1,10 \pm 0,10$	137,40 ± 4,70	$166,70 \pm 42,40$					
10	Опыт	44,60 ± 2,90 *	1,46 ± 0,18*	135,00 + 9,00	$169,90 \pm 43,40$					
15	Контроль	$54,90 \pm 4,50$	$1,33 \pm 0,15$	$138,00 \pm 5,20$	$161,30 \pm 20,20$					
13	Опыт	50,40 ± 3,10	$1,40 \pm 0,21$	143,00+ 7,00	$160,20 \pm 13,20$					

Примечание: * — P < 0.05

ЛИТЕРАТУРА

- Перелік пестицидів і агрохімікатів, дозволених до використання в Україні : каталог / [упоряд. С.€. Пренцев, Д.В.Іванов, Н.В. Любач та ін.]. — К: Юнівест Маркетинг, 2008 — 448 с.
- Ларина Г.Е. Экологические аспекты сельскохозяйственного применения сульфонилмочевинных гербицидов / Г.Е. Ларина, Ю.Я. Спиридонов, В.Г. Шестаков // Агрохимия. 2002. №1. С.53 67.
- 3. Поддымкина Л.М. Фитотоксичность почвы и персистентность гербицида Ленок после его применения в посевах льна / Л.М. Поддымкина, А.В.Захаренко [и др.] // Плодородие. 2003. № 4 (13). C.35 37.
- Сидоров К.К. Введение веществ в желудок, в трахею, под кожу, в вену и другие пути введения ядов лабораторным животным / К.К. Сидоров М.: Наука, 1976. 87 с. (Методы определения токсичности и опасности химических веществ).
- Прозоровский В.Б. Использование метода наименьших квадратов пробит анализа кривых летальности / В.Б. Прозоровский // Фармакология и токсикология. — 1963. — №1. — C.115 — 120.
- Методические указания по гигиенической оценке новых пестицидов. К.: ВНИИГИНТОКС, 1988. - 203 с.
- Гігієнічна класифікація пестицидів за ступенем небезпечності. ДСанПіН 8.8.1.002 -98. — К.: МОЗ України, 1998. — 20 с.
- Раевский К.С. Многоканальная установка для регистрации двигательной активности лабораторных животных (крыс, мышей)./ К.С. Раевский К.С., В.А. Тимофеев // Бюллетень экспер.мед. 1965. № 6. —

- C 114-116
- 9. Балынина Е.С. К вопросу применения поведенческих реакций в токсикологических исследованиях / Е.С.Балынина, Л.А. Тимофиевская.// Гигиена и санитария. 1978. №7. С.54 58.
- Руководство по гематологии / [ред.А.И.Воробьева]. — М.: Медицина, 1985. — т.1-2 — 448 с.
- Ватмахер У.А. Коагулограф новый портативный прибор для исследования системы свертывания крови /У.А Ватмахер., И.А.Толстопятова., Т.И. Пьянкова // Лабораторное дело. 1969. № 8.. С.496 499.
- 12. Справочник по клинической химии [сост. В.Г. Колб, В.С. Камышников]. Минск: Беларусь, 1982. 366 с.
- Методы исследований в профпатологии (биохимические) / [ред. О.А.Архипова]. — М.: Медицина, 1988. — 208 с.
- Машковский М.Д. Лекарственные средства (пособие для врачей) / М.Д. Машковский Харьков: Торсинг, 1997. Т. 2. С. 20-25.
- 15. Ронин В.С. Руководство к практическим занятиям по методам клинических лабораторных исследований / В.С. Ронин, Г.М. Старобинец, Н.Л. Утевский. М.: Медицина, 1977. 334 с.
- 16. Набор реактивов для радиоконкурентного определения инсулина в сыворотке крови. Минск: Полымя, 1988. 4 с.
- Арчаков А.И. Микросомальное окисление. / А.И. Арчаков М.: Наука, 1975. 325 с.
- Методические рекомендации по определению активности оксидаз смешанной функции в ткани печени и легких при воздействии химических веществ. — М.: Медицина, 1980. — 17 с.

- Стальная И.Д. Современные методы в биохимии / И.Д. Стальная, Т.Г. Гаришвили / [ред. В.Н.Ореховича] — М.: Медицина, 1977. — 144 с.
- Биохимические методы исследования / [ред. Пушкина Н.Н.]. М.: Медгиз, 1963. 195 197 с.
- Биохимические методы в токсикологическом эксперименте и клинике: методическое руководство. — К.: ВНИИГИНТОКС, 1985. — С.20 — 23.
- 22. Лабораторные методы исследования в клинике / [ред. В.В.Меньшиков.] М: Медицина, 1987. 368 с.
- Siggard-Andersen O. Blood asid-base aliggnment nomogram. Scand / O. Siggard-Andersen. // J. Clin. Lab. Invest. 1963. 211 p.
- Каган Ю.С. Гербициды-производные мочевины./ Ю.С. Каган., М.Ю. Климова. М.: ЦМПГКНТ, 1988. 55 с.
- Набор реактивов для радиоконкурентного определения тироксина в сыворотке крови. Минск.: Полымя, 1988. 4 с.
- 26. Набор реактивов для радиоконкурентного определения трийодтиронина в сыворотке крови. Минск: Полымя, 1988. 4 с.
- 27. Голиков С.Н. Общие механизмы токсического действия / С.Н. Голиков, И.В. Саноцкий, Л.А. Тиунов. Ленинград: Медицина, 1986. 280 с.
- 28. Набор реактивов для радиоконкурентного определения кортизола в сыворотке крови. Минск: Полымя, 1988. 3 с.
- Иванов Ю.И. Статистическая обработка результатов медико-биологических исследований на микрокалькуляторах по программам / Ю.И. Иванов, О.Н. Погорелюк. — М.: Медицина, 1990. — 224 с.

Л.О. Рудая, П.Г.Жмінько

ТОКСИЧНІ ВЛАСТИВОСТІ ГЕРБІЦИДУ КАЛІЄВОЇ СОЛІ ХЛОРСУЛЬФУРОНУ ПРИ ОД-НОКРАТНІЙ ПЕРОРАЛЬНІЙ ДІЇ НА ОРГАНІЗМ ТЕПЛОКРОВНИХ ТВАРИН

Дослідженнями гострої токсичності на білих шурах, мишах та кролях встановлено, що калієва сіль хлорсульфурону (К-сіль ХС) належить до малонебезпечних сполук — 4 клас небезпеки згідно з ДСанПіН 8.8.1.002-98.

При одноразовій дії К-солі XC на організм білих щурів (самців) на рівні 1/2 ЛД $_{50}$ (2790 мг/кг) встановлені зміни функціонального стану нервової системи, периферичної системи крові, системи оксидаз змішаної функції, перекисного окислення ліпідів; порушення фізико-хімічного гомеостазу, ліпідного, вуглеводного та гормонального обмінів. Зроблено припущення, що в механізмі гострої токсичної дії К-солі XC важливу роль може відігравати гіпоксія, що розвивається внаслідок порушення окислювально-відновлювальних процесів в організмі щурів.

L.A. Rudaya, P.G. Zhminko

TOXICOLOGICAL PROPERTIES OF CHLORSUL-FURON POTASSIUM SALT HERBICIDE THROUGH SINGLE ORAL ADMIN-ISTRATION TO MAMMALIAN

By the acute toxicity on non-breed albino rats, mice, rabbits it has been shown that chlorsulfuron potassium salt (K-salt CHS) is a slight-haz-ard compound (4 class of hazard according to DSaNPiN 8.8.1.002-98).

The changes of the nerves system function, peripheral blood system, oxidase mixed function, lipid peroxygenation, alteration of physical and chemical homeostasis, carbohydrate, lipid and hormonal metabolism under K-salt CHS single oral administration to male rat at the level 1/2 LD50 have been established.

In our opinion hypoxia is an important factor as a result of damage the redox reaction in the rats organism in the K-salt CHS acute toxicity.